
Theoret. chim. Acta (Berl.) 25, 17--40 (1972) 
@ by Springer-Verlag 1972 

Optimal Double-Configuration Study of the 
Lowest Excited//States of H2 

I. Potential Energy Curves and One-Electron Properties 

KARL JUG ~ 
Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616 

and Department of Chemistry, Saint Louis University, Saint Louis, Missouri 63156 

PETER G .  LYKOS** 

Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616 

A. D. MCLEAN 
IBM Research Laboratory, San Jose, California 95114 

Received July 20, 1971 

Various levels of approximation (Hartree-Fock, confguration interaction and double-configura- 
tion Hartree-Fock method) are compared for extensive and limited exponent optimization of the 
atomic orbitals of the wavefunctions. The potential energy curves for the lowest-lying 1//~, 3//~, 1//g, 
3//g states of the hydrogen molecule are presented. The shapes of the curves on the highest level of 
approximation, i.e. with the optimal double-configuration wavefunction, are basically in agreement 
with previous, more sophisticated and time-consuming work. The influence of the various approxi- 
mations is also studied for several one-electron properties: charge distribution of the wavefunction 
along and perpendicular to the molecular axis, quadrupole moment and core attraction energy distri- 
bution. Differences arise to the work of Zemke et al. [11 who used a limited exponent optimization 
with a larger basis set, in the Hg states where the n orbitals are very diffuse. The differences concern 
magnitude and location of minima and maxima of potential curves, as well as considerable changes 
in one-electron properties which depend strongly on the spatial distribution of the orbitals. 

Verschiedene Approximationsstufen (Hartree-Fock, Konfigurationenwechselwirkung und Doppel- 
konfigurationen-Hartree-Fock-Methode) werden fiir ausgedehnte und begrenzte Exponentenoptimi- 
sierung von Atomorbitalen der Wellenfunktionen verglichen. Die Potentialkurven f'tir die niedrigsten 
1II,, aH~, Jflg, 3Hg Zustiinde des Wasserstoffmolekiils werden angegeben. Die Form der Kurven im 
Rahmen der besten N~iherung, d. h. mit Doppelkonfiguration, stimmen im wesentlichen mit friiheren 
aufwendigeren Rechnungen tiberein. Der Einflug der verschiedenen Approximationen wird auch an 
einigen Einelektroneneigenschaften studiert: Ladungsverteilung der Wellenfunktion l~ings und senk- 
recht zur Molekiilachse, Quadrupolmoment und Verteilung der Rumpfenergie. Unterschiede er- 
scheinen zur Arbeit yon Zemke et al. [1], die einen grSl3eren Basissatz mit begrenzter Optimisierung 
verwandten, bei den Hg Zustiinden, wo die ~-Orbitale sehr diffus sind. Die Unterschiede betreffen 
GrSge und Lage der Minima und Maxima der Potentialkurven sowie betriichtliche Anderungen in 
solchen Einete!ttroneneigenschaften, die stark von der r~iumlichen Verteilung der Orbitale abh~ingen. 

Comparaison de diff6rents niveaux d'approximation (Hartree-Fock, interaction de configuration 
et Hartree-Fock ~t deux configurations) pour des optimisations 6tendues et limit6es des orbitales 
atomiques de base. Calcul des courbes d'6nergie potentielle pour les plus bas 6tats 1//,, 3/-/,, 1Hg ' 3Hg 
de la molecule d'hydrog~ne. Pour la fonction d'onde la plus raffin6e: H.F. ~t deux configurations, la 
forme des courbes est en accord avec les r6sultats obtenus dans des travaux pr6c6dents plus complexes 
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et plus cofiteux. On 6tudie aussi l'influence des diverses approximations sur plusieurs propri6t6s 
mono~lectroniques: distribution de charge le long de l'axe mol6culaire et perpendiculairement /~ 
celui-ci, moment quadrupolaire et distribution de l'6nergie d'attraction de coeur. On trouve des 
diff6rences avec le travail de Zemke et al. (1), qui utilisent une plus grande base partiellement optimis~e, 
pour les 6tats Hg oh les orbitales ~ sont tr6s diffuses. Les diff6rences concernent la grandeur et la position 
des extrema des courbes de potentiel, ainsi que des variations importantes des propri6t6s mono- 
61ectroniques qui d6pendent fortement de la distribution spatiale des orbitales. 

1. Introduction 

The purpose of this paper  is to study various levels of approximation in the 
M O  LCAO framework with the example of the lowest-lying 1FI,, 3//u, 1//o, 3Hg 
states of the hydrogen molecule. Different types of wavefunctions were employed. 
The energies and expectation values of one-electron operators of a single-con- 
figuration type wavefunction ~bnv are compared with those of a double-con- 
figuration wavefunction of CI type Tc~= ACI~HF-t-BcI~HF, and of extended 
Har t ree-Fock type TODC = AoDc ~nv + Bo~)c ~HF'. In the latter wavefunction the 
coefficients A and B are also subjected to a self-consistent iteration procedure. 
The configurations are built up of the proper  linear combinations of determinants 
for each of the f o u r / / s t a t e s ,  q~RF and ~Hv' are chosen in such a way that they 
allow for proper dissociation of the molecular states in excited atomic states. 
The molecular orbitals used are the lowest %, au, re,, n o functions given as linear 
combinations of a small number  of equivalent atomic orbitals on each center. 

The present approach was used by Zemke et al. [-1] to study primarily the 
1//, state, but also some of the characteristic features of the 3//u, 1//o and 3//g states. 
The present work is a generalization and complement  of their study. Therefore 
we shall, in the next sections, be brief about  the details of the method and emphasize 
only the differences arising in the present work. Most of the general features of 
the method are equal; the emphasis of the work of Zemke et al. [1] was on a 
limited exponent optimization of a medium-sized atomic basis set. Our  objective 
was a full exponent optimization of a smaller basis set. Zemke et al. used the follow- 
ing atomic basis on each center {ls, 2s, 3s, 2pa, 3da, 2p~z, 3p~, 3d7~, 4dzc, 4f~}.  
They optimized the exponents for these 2 x 10 basis functions for the 1//, state 
at R - - 2  Bohr by minimizing the total energy of this state with a double-con- 
figuration function 7~ODC of extended Har t ree-Fock type. They used these ex- 
ponents for the study of all the other distances from R - -  1.5 to 10 Bohr of the 
potential energy curve EoDc of 1//, and also the 3//u, 1//g and 3/-/0 states. We 
employed a basis {ls, 2s, 2pa, 2pro, 3dzr} on each nucleus. We optimized the ex- 
ponents of the orbitals at a number  of distances covering the potential curves 
from R = 1.5 to 10 Bohr. The optimization was performed separately for each of 
the four states. Details of the optimization can be found elsewhere [2]. For 
comparison,  we have also calculated the properties of the 3//,, 1//0 and 3//0 states 
with the optimal exponents of the 1H, states at the same distance. 

We find the potential curves characterized properly in magnitude and location 
of minima and maxima for calculations based on optimized exponents. With 
comparat ive calculations with a single-state exponent set, here of the 117, state, 
for all four states we find larger inaccuracies in the magnitude than in the location 
of the minima. The location of the maxima with a small basis set is a difficult 
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problem. One-electron properties are more uniform for all four states when 
calculated with a single-state exponent set instead of separate optimization. The 
t I I  u state exponent set leads to considerable inaccuracies for the Hg states where 
diffuse ~ orbitals are involved. Details of Sections 3 and 4 lead us to the conclusion 
that exponent optimization of the dominant orbitals is necessary in small basis 
sets. 

2. The Method 

We use the Hamiltonian of the hydrogen molecule in the form consisting 

of kinetic energy T and nuclear attraction 

1 and nuclear repulsion 1 repulsion 
r l 2  R 

1 1 
F a F b 

of each electron, electronic 

1 1 
H = H ~ + H 2 +  + - -  (2.1) 

/~12 i 

1 1 
with H i = T ~ -  i = 1 , 2 .  

rai rbi 

The approximate wavefunction is of double-configuration form 

= A g'~ + B @2 (2.2) 

where q~, and 452 are orthonormal. The total energy of the system is 

1 
Etota! - A2 q- B2 {A 2 H A + B2HB + 2ABHA, } (2.3) 

with HA = IHI < >  

= IHI �9 

To obtain a minimal energy with respect to A and B, we have to solve 

H•;E //An E HB - = 0 .  (2.4) 

We shall use a normalized wavefunction in the following. 
Each configuration ~i consists of two determinants built up by a sigma 

MO a i a n d a p i  M O ~ i  

1,3(Pi=�89 Llo,(2)~,(2)l + gi(2)~i(2) J (2.5) 

The minus sign refers to the singlet, the plus sign to the triplet state and the bar 
to fl spin. The MO set a l ,  o-2, rq, rc 2 is assumed as orthonormal. With these 

2* 
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wavefunctions, HA, Hn and HAe can be reduced to 

(2.6) 

For convenience, we have dropped the nuclear repulsion. 
H~, and H., are the usual core integrals and J and K the Coulomb and ex- 

change integrals 

J~lXl = (0"10-1 1~1~1)  ' 

K,~,~, = (0-1 re1 lira 0"0, 

J, . . . .  ,~= = (0"10"21 rqrc2), 

K. , .~. ,~ = (0"1rc2 Irha2). 

If we subject the energy (2.3) to variation with respect to the MO's o- i and r h 
(i = 1, 2) preserving the orthonormality, we obtain the following set of equations 

A2(H1 + d~, +_ K,,,) 0"~ (1) + AB(J~,~2 + K,~,~) 0"2(1) = 2~0"1(1) 

B2(H2 + ./,~ + K,~) 0"2(1) + AB( . I~ ,  + K~,~) 0"1(1) = 2,,~a2(1 ) 

A 2 (H 1 + d,,, + K,,I) ~zl (2) + A B (d,,,, 2 + K,,,2) rc2 (2) = 2,~ re1 (2) 

B2(Hz + Y,,2 + K,,~) rc2(2) + AB(.I,,~,,~ -}- K ... .  ) rh(2 ) = 2,~2rc2(2 ) . 

(2.7) 

These are the extended Hartree-Fock equations in double-configuration form 
for this particular two-electron case [3]. The 2's are the Lagrange multipliers. 
The ofher multipliers vanish for symmetry reasons: As mentioned in the intro- 
duction, we used only one MO of each of the symmetry types 0"0, 0",, re,, reg. The 
J's and K's are the usual Coulomb and exchange operators 

J~10"i(1)= /x i (2)  r + z  xi(2)/0-i(1) 

K.,0"1(1)=(Trl(2) r ~ 2  0-i(2))zq(1) 

�9 /,~20"2(1)=(7rt(2) r + 2  ~Zz(2))0-2(1) 

K~,=20"2(1)= (n1(2) r ~  z 0"2(2))rc2(1) etc. 

After expansion of the MO's in atomic orbitals Eqs. (2.7) can be written in matrix 
form 

F i C  i = S i C i 2  i i = O'1, 0"2, ~1 ,  7~2 (2.8) 
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where the double-configuration self-consistent field Hamiltonians are defined as 

F~ = A2(H~ + Q ~ ) +  ABW~ 

F~ = B2(I-I2+ Q~2) + AB W~ 

F~2 = B~(1-I~+ 9_~) + AB W~. 

(2.9) 

The repulsion energy matrix Q and coupling energy matrix W are obtained from 
contraction of supermatrix 0 .  For  example 

Dt  ~ Qo~= ~,~Q . . . . .  ~ ,  

w~l = (P~I~2 c~2) (sol c~)* + (s~l co,) (P~2 c~)* 

with ea~z= D~20_~2 . . . . .  

D i j  = C i C  ~ i,j = (71, a2. , ~1,  7~Z, 

9-~ijkl = Jijkl + Kiikl  �9 

The J's and K's are the usual electronic repulsion integrals over atomic orbitals 
i,j, k, I. The formulas for the other cases are similar. 

Solutions of the coupled Eqs. (2.8) yield the double-configuration self-con- 
sistent field MO's which allow us to calculate the energy and expection values 
of one-electron operators. The Hartree-Fock case is contained in the formalism 
with A = 0 or B = 0. In the following the energies H a and H B are denoted by EHF 
and EriE,. The configuration interaction energy Eo  is then obtained by solving 
Eq. (2.4). The coupling energy HAB , now denoted by Ecoup~ing, has to be calculated 
separately. The final energy Eooc referring to the MO's which are solutions of 
the coupled Eqs. (2.8) and (2.9) is obtained after self-consistent iteration of both 
linear AO coefficients C~ and configuration coefficient A. We employed an iteration 
procedure which alternately improves C~ and A in single steps. 

In the following sections, we have chosen 4~nr consisting of MO's % and Tc u 
for H, states and a 0 and rc 0 for Hg states, whereas r consists of a u and Tc 0 for Hu 
states and a, and ~z, for Hg states. The MO's are those belonging to lowest 
eigenvalue for each symmetry type of operator F of (2.9). The atomic basis set 
consists of symmetry adapted orbitals: three a AO's {ls, 2s, 2pa} and two 7r AO's 
{2plr, 3d~} on each center with equal exponents for equivalent orbitals. 

3. Potential Energy Curves 

The results of this paper are based on extensive exponent optimization of 
the symmetry adapted atomic basis set. The final exponents are collected in Table 1. 
The exponents of the ls, 2s, 2pa and 3d~z orbitals were optimized at R = 1.5, 2, 3, 
6 and 10 Bohr. For  the other distances the exponents were interpolated linearly. 
The 2p~z-orbital exponents were optimized at all distances listed. All exponents 
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Fig. 1. ODC mixing coefficients A and differences A A between 1/1, based and optimal values 

were determined by minimizing EoDc, except 1Hg and 3Hg at R = 1.5 to 3 Bohr. 
These exponents were optimized so to minimize EHF rather than Eoo c. The reasons 
for doing so were purely economical. This part  of the work involving integrals 
with such small exponents was finished only recently with a different program, 
whereas the other part  was done two years ago. Our calculations indicate that 
we can safely assume that configuration interaction is so small for the range 
R = 1.5 to 3 Bohr that not much improvement  would result from optimizing 
EoD c. In principle the values for the 2pro-exponents would slightly increase. 

Fig. 1 presents, on the O D C  level, optimal coefficients A and differences 
A A = A ' - A  between mixing coefficients A' calculated with i I I  u exponents and 
optimal coefficients A. The results are also that the O D C  approximation tries 
to mix the two configurations more than the CI approximation.  

F rom the potential energy curves in the following tables this will become 
clearer. If ~HF is the dominant  configuration, A is decreased when going from CI 
to ODC,  otherwise it is increased. For  the optimized exponents (Table 1) the 
configurations of the H 9 states are more strongly mixed than for the non-optimized 
exponents. The situation is reversed for the 3//, state. 

Tables ~ 5  contain the self-consistent field energies EHF and EHF, of the two 
configurations ~HF and O~HF. , their configuration interaction energy E o and the 
opt imum double-configuration energy Eoo c and the coupling energy Ecoupling 
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Table 2. Potential energy curves and coupling energy for 111, state of H 2 

R EHF EHF, ECI EOD C E~ "pllng E~~ T M  

1.5 -0.69571 0.02498 -0 .69612 -0 .69700 -0 .00082 -0 .00260 
1.8 -0 .71136 -0 .12102 -0 .71198 -0.71301 -0 .00125 -0 .00330 
1.95 -0 .71249 -0 .17596 -0 .71326 -0 .71433 -0 .00155 -0 .00369 
2.0 -0 .71223 -0 .19217 -0 .71307 -0 .71415 -0 .00167 -0 .00383 
2.2 -0 .70900 -0 .24834  - 0.71014 -0 .71122 -0 .00228 -0 .00445 
3.0 -0 .68040 -0 .38819 -0 .68378 -0 .68447 -0 .00668 -0 .00809 
4.0 -0 .64228 -0 .46440  -0 .65188 -0 .65202 -0 .01826 -0 .01868 
5.0 -0 .61376 -0 .49673 -0 .63353 -0 .63404 -0 .03455 -0.03583 
6.0 -0 .59494 -0 .52087 -0 .62097 -0 .62701 -0 .04133 -0 .05193 
7.0 -0 .58240 -0 .52254  -0 .62109 -0 .62475 -0 .05557 -0 .06220 
8.0 -0 .57227 -0 .52465 -0 .62189 -0 .62428 -0.06571 -0 .07010 

10.0 -0 .55476 -0 .52626 -0 .62379 -0 .62448 -0 .08084 -0 .08212 

Table 3. Potential  energy curves and coupling energies for 3//, state of H 2 

coupling R EHF EHF, Eel EOD C E~ upling EOD C 

1.5 -0 .71334  0.03694 -0 .71383 -0 .71426 -0 .00098 -0 .00185 
1.8 -0 .73012 -0 .09805 -0 .73091 -0 .73135 -0 .00158 -0 .00246 
1.95 -0 .73169 -0 .15015 -0 .73268 -0 .73309 -0 .00198 -0.00281 
2.0 -0 .73156 -0 .16590  -0 .73263 -0 .73303 -0 .00213 -0 .00294 
2.2 -0 .72869 -0 .22122  -0 .73009 -0 .73044 -0 .00280 -0.00351 
3.0 -0 .70020 -0 .37222  -0 .70345 -0.70361 -0 .00644 -0 .00680 
4.0 -0 .66119 -0 .36585 -0 .66829 -0 .66847 -0.01371 -0.01421 
5.0 -0 .63179 -0 .50908 -0 .64506 -0 .64554 -0 .02417 -0 .02547 
6.0 -0 .61186 -0 .53408 -0 .63082 -0 .63388 -0.03171 -0.03781 
7.0 -0 .59760 -0 .53971 -0 .62643 -0 .62886 -0 .04327 -0 .04825 
8.0 -0 .58691 -0 .54326 -0 .62475 -0 .62685 -0 .05168 -0 .05587 

10.0 -0 .57046 -0 .54536 -0 .62470 -0 .62564 -0 .06430 -0 .06613 

Table 4. Potential energy curves and coupling energies for ~//0 state of H 2 

coupling R EHF EHF, Eei EOD C E~] upling EOD C 

1.5 -0 .63663 -0 .05059 -0 .63671 -0.63671 -0 .00017 -0 .00017 
1.8 -0 .65459 -0 .18078 -0 .65472 -0 .65472 -0 .00025 -0 .00026 
2.0 -0 .65693 -0 .25975 -0 .65711 -0.65711 -0 .00034 -0 .00035 
2.2 -0 .65513 -0 .31647 -0 .65536 -0 .65536 -0 .00046 -0 .00047 
3.0 -0 .63198 -0 .46743 -0 .63267 -0 .63270 -0 .00138 -0 .00145 
4.0 -0 .56695 -0 .55136  -0 .60480 -0 .60619 -0.04431 -0 .04693 
5.0 -0 .54497 -0 .56928 -0 .61136 -0 .61802 -0 .05158 -0 .06290 
6.0 -0 .54146 -0 .57560  -0 .61391 -0 .62340 -0 .05012 -0 .06579 
7.0 -0 .53013 -0 .57316  -0 .61912  -0 .62520 -0 .06061 -0.07081 
8.0 -0 .52685 -0 .56765 -0 .62155 -0 .62563 -0 .06869 -0 .07562 

10.0 -0 .52654 -0 .55400  -0 .62451 -0.62551 -0 .08200 -0 .08377 
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Table 5. Potential energy curves and coupling energies for 3H 9 state of H2 
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R Ear EHF, EcI EoDc E~Upling EooceOUpling 

1.5 -0.63693 -0.05220 -0.63698 -0.63703 -0.00010 -0.00019 
1.8 -0.65497 -0.19146 -0.65505 -0.65511 -0.00015 -0.00028 
2.0 -0.65739 -0.26142 -0.65750 -0.65757 -0.00020 -0.00036 
2.2 -0.65569 -0.31790 -0.65583 -0.65592 -0.00028 -0.00046 
3.0 -0.63303 -0.45860 -0.63346 -0.63366 -0.00085 -0.00127 
4.0 -0.60143 -0.54674 -0.60558 -0.60634 -0.00775 -0.00931 
5.0 -0.56160 -0.58410 -0.60960 -0.61253 -0.03331 -0.03903 
6.0 -0.55573 -0.58957 -0.61560 -0.61962 -0.03629 -0.04386 
7.0 -0.54934 -0.58753 -0.61942 -0.62247 -0.04384 -0.04975 
8.0 -0.54745 -0.58224 -0.62140 -0.62362 -0.05120 -0.05553 
100 -0.54629 -0.56944 -0.62366 -0.62444 -0.06375 -0.06528 

for all four H states with the optimal exponents for each state. With respect to 
the hierarchy of models HF, CI and ODC we observe that most of the corre- 
lation energy is in the step from HF to CI and little further energy decrease 
results from going from CI to ODC level. The difference between CI and ODC 
energies increases with increasing internuclear distance in the range R = 1.5 to 
10 Bohr, reaching a maximum at R = 6 Bohr. From calculations not presented 
here, we can also learn that exponent optimization always improves EOD c but 
the corresponding EnF might be higher than the EHF of a non-optimized exponent 
set. This is particularly true when configuration interaction becomes important. 
For aH u and 3Hg this is true for R ___ 5 Bohr, for 1H o for R > 4 Bohr. The Hartree- 
Fock curves are in general far too high with the ODC optimized basis set and 
so there is little meaning in considering the difference between EOD c and EHF 
in our calculations as a good description of the correlation energy. With the 
(sometimes only little) improvement of EOD c we sacrifice information about ERIE. 
With a larger basis set, even with limited exponent optimization, there seems 
to be more flexibility in linear combinations to represent both self-consistent field 
states HF and HF'  satisfactorily. This is particularly true for Hg states, but also 
for the 3H~ state [4]. 

The complete set of potential curves for the four /7  states is given in Figs. 2-5. 
The easiest way to describe them is to say that the EOD c curves of XHu and 3/7, 
states calculated with the optimal exponents of Table 1, match almost exactly 
the results of Browne [5]. For  the tHa states Browne [6] lists only values at 8 
and 10 Bohr. Our values agree with those, too. 

For  tH~ our results are inferior to those of Zemke et al. [1] for R < 6 Bohr. 
For  larger distances our results are better because their fixed 2pro exponent 
could not converge to the proper limit. The difference between the two curves 
EoDc and E~DC is, however, not considerable. Both curves show a minimum at 
about 1.95 Bohr quite in agreement with the extensive calculation by Kolos and 
Wolniewicz [73. At larger distances both EOD c and E~D c have a hump not visible 
in the figure. From the virial theorem ratio of potential and kinetic energy this 
maximum is located in our calculation at about 7.8 Bohr, whereas the more 
precise calculation by Kolos and Wolniewicz [7] locates it at 9 Bohr. 
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Fig. 6. ODC kinetic energies T and differences A T between t//. based and optimal values 

The Eooc potential curve for 3/I, is slightly lower than Zemke et al.'s denoted 
by E~D c. We prefered not to include it in the figure because it is almost in- 
distinguishable from ours. Both curves have a minimum at R = 1.95 Bohr and no 
maximum. The potential curve E~)oc for this state calculated with the exponents 
of all, is quite inferior to both EOD C and E~)DC but locates the minimum correctly. 
However, here the virial theorem is not of much help since the internal distribution 
of kinetic and potential energy is way off the correct ratio for this case. 

Most interesting are the 110 states, where exponent optimization comes to 
full fruition at small internuclear distances. The fully optimized curve EoDc is 
lower than Zemke's curve E~DC, which in turn is lower than the curve E~DC, 
based on the 111, optimization. All three curves show minima at about R = 2.00 Bohr 
which, for the 3110 state, is in agreement with the more extensive calculation of 
Wright and Davidson [8]. For  a//g there is a maximum between 4 and 5 Bohr 
which is correctly located on all three levels of approximation Eooc, E~DC and 
Ec;DC. Quite interestingly, the larger basis set of Zemke et al. is more favorable 
than the present optimized set at some distances where strong configuration 
interaction occurs. We attribute this to the flexibility of linear optimization which 
can decrease the energy of both Hartree-Fock curves Env and EnF,, whereas non- 
linear parameter optimization seems to favor one curve at the costs of the other. 
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Fig, 7. ODC electronic energies E~ and differences A E~ between 1/i. based and optimal values 

For larger distances R > 6 Bohr our asymptotic set gains advantage over the 
unoptimized set by Zemke et al. 

Similar consquences hold for the 117g state, where we locate the maximum 
at about 3.85 Bohr, whereas Zemke et al. located theirs tentatively at about 
4.2 Bohr. Since they do not list values referring to the virial theorem, their choice 
is somewhat arbitrary. The precise location of the maximum has to await further 
investigation. The features of these curves are well-represented also in the less 
optimized E'ooc curves although the location of the maxima undergoes a shift 
to smaller R values. 

In the asymptotic limit of the ODC level all four states dissociate to the same 
atomic states. But 1/7, and 3170 approach each other more closely and so do 3H, 
and 21Io. This is expressed in the energies at 10 Bohr. 

Figs. 6-8 contain the ODC energy breakdown and virial theorem for all 
four 17 states with the optimal exponents and differences to ~17, state based 
values of these quantities. Further calculations show an increase of kinetic energy 
when going from the HF  level to the ODC levels for 1H,, 3/1, and 317g states. 
For ~H o there is a surprising decrease of kinetic energy for R > 7  Bohr. The 
increase of kinetic energies is certainly more than compensated by a decrease 
of potential energy. As far as a comparison of the two levels of exponent optimi- 
zation is concerned, we can say that exponent optimization increases the kinetic 
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Fig. 8. ODC virial theorem ratios V and differences A V between ~/7. based and optimal values 

energy of the all, state, but decreases it for internuclear distances smaller than 
4 Bohr, for the FI  o states. One might conclude that the wavefunction tries to 
contract upon exponent optimization for the 3H, state and expand for the Hg 
states. Details can be found in the next section. 

4. Properties of One-Electron Operators 

The density distribution perpendicular to the molecular axis can be analyzed 
by studying the expectation values of 02 , the distribution along this axis by 

2 studying z a. 

Perpendicular to the molecular axis, measured by 0 z, there is a slight contrac- 
tion in t he / / ,  states, whereas the Hg states show a contraction for smaller distances 
and an expansion for larger distances when going from the H F  level to the ODC 
level. Comparison of the four states shows again that 3H, is more contracted 
than 1//, whereas the H o are far more expanded (Fig. 9). The distributions of all 
four states come very close to each other when calculated with the exponents 
of 1H,. 

Comparing the levels of approximation we find that when going from HF 
to ODC, (z  2) increases for t h e / / ,  states and decreases for the H o states. Simply 
speaking, the ODC functions on each atom for the / / ,  states try to expand to 
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Fig. 9. ODC squares of wavefunction extensions 0 2 perpendicular to molecular axis and differences 
A 0 z between 1/7. based and optimal values 

gain energy, whereas they try to contract for the/ /9  states. This fact can be at- 
tributed to the different nodal character of the ~HF' admixture for / / .  and / /9  
states. Comparing the extensions of 17. states with/79 states calculated with optimal 
exponents we can say that the/79 states are more diffuse than the/7,  states and 
3/7. is more contracted than the 1/7. state. It is no surprise to find that with the 
1/7. optimized exponents the other three try to approach the extensions of (z 2) 
of 1//u. F o r  ~//.(zZ~) increases, whereas for 
Again we observe that the asymptotic limit 
values of (z 2) for 1H. and 3//9 on one hand 
are very close. This trend can be observed also 

the Hg states it decreases (Fig. 10). 
shows at 10 Bohr where the ODC 
and 3[i. and 1//9 on the other hand 
for the other one-electron properties. 

Quantities <~o~> and <z~) allow us to calculate the quadrupole moment 
<3z~-r2> with respect to an atomic origin. The calculations show that the H, 
states are more expanded perpendicular to the direction of the molecular axis for 
small internuclear distances, and in the direction of the molecular axis for large 
internuclear distances. The/7o states show a distribution which is always more 
expanded in the direction of the molecular axis than perpendicular to it. 

The major portion of nuclear attraction energy I l l  is due to attraction 

(sin20/r.) perpendicular to the molecular axis than to attraction along the 
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direction of the axis. The ratio (sin 2 O/r,)/(1/r,) is very similar for all four states, 
being about 0.6. For comparison, in a spherical distribution this ratio would 
be 0.666. The expectation values for all four states are coming closer together 
if they are calculated with the 1F/. optimized exponents. 

Tables 6-9 contain the eigenvalues of the double-configuration self-consistent 
field Hamiltonian F of (2.9). For  the Hartree-Fock level, these are the orbital 
energies of the two MO's of ~nv and ~HF' calculated separately with B --- 0 or 
A = 0. The ordering of the levels is 2,g < 2~, < 2~, < 2~g except for the 170 states 
at 10 Bohr where 2,. < 2 , .  These levels should approach -0.38 for the o- MO's 
and -0.003 for the rc MO's. There is no indication for these limits at 10 Bohr. 
The reason is that the electronic interaction is still very strong, i.e. in the order 
of 0.1 Hartrees; the kinetic energy has already approached the proper limits very 
closely. The only other remarkable feature is the positive orbital eigenvalue of 
the MO rc o of 3Ii, at 2.2 Bohr with the optimal exponents, which disappears for 
a 117. exponent calculation. The ODC values are the Lagrange multipliers. For 
small distances, the two multipliers referring to orbitals of configuration #rw 
are close to their corresponding SCF values, whereas the other two have no 
resemblance to the SCF values. The more mixing occurs between the two con- 
figurations #nv and ~bnv, the more the Lagrange multipliers decrease for the 
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Table 6. Eigenvalues of 1H u state of H2 
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R ~g flu ~u TO 

1.5 --1.02222 --0.43665 -0.11454 --0.01860 
-1.02359 --0.00290 -0.11699 --0.00227 

1.8 --0.93406 --0.47430 --0.11230 -0.02505 
--0.93560 -0.00392 --0.11537 -0.00292 

1 . 9 5  --0.89591 --0.48713 -0.11120 -0.02600 
--0.89750 -0.00455 --0.11461 --0.00330 

2.0 -0.88398 -0.49048 --0.11083 --0.02600 
-0.88558 --0.00478 -0.11436 -0.00343 

2.2 -0.83939 -0.49993 -0.10942 --0.02490 
--0.84099 -0.00585 -0.11346 --0.00404 

3.0 --0.70392 -0.50736 --0.10410 --0.02209 
-0.70391 --0.01381 -0.11093 -0.00793 

4.0 --0.59252 -0.48930 -0.09766 -0.01920 
--0.58291 -0.04279 -0.11158 --0.01958 

5.0 -0.52220 --0.47062 -0.09069 --0.01959 
-0.49221 --0.09654 --0.11480 -0.03824 

6.0 -0.47983 -0.47708 -0.08403 -0.03033 
--0.43009 -0.14979 -0.11701 --0.05573 

7.0 -0.45774 --0.44925 --0.07762 --0.02637 
-0.38778 -0.19182 -0.11590 --0.06898 

8.0 -0.44396 -0.43427 -0.07024 -0.02614 
-0.36112 -0.22038 -0.11478 --0.07891 

10.0 --0.42671 -0.41799 --0.05438 --0.02641 
--0.33111 -0.25657 -0.11336 --0.09315 

HF 
ODC 

Table 7. Eigenvalues of 3H u state of H 2 

R fig flu ~u To 

1.5 -0.98849 -0.42247 -0.13276 -0.00680 
-0.98948 -0.00210 -0.13449 -0.00170 

1.8 -0.90092 -0.44642 -0.13177 -0.00230 
-0.90208 -0.00300 -0.13403 -0.00229 

1 .95  -0.86394 -0.45370 -0.13113 -0.00035 
-0.86515 -0.00355 -0.13369 -0.00263 

2,0 -0.85239 -0.45592 -0,13089 -0.00009 
-0.85362 -0.00376 -0.13355 -0.00275 

2,2 -0.80907 -0.46241 -0.12989 0.00182 
-0.81031 -0.00474 -0.13301 -0.00333 

3,0 -0.68155 -0.48000 -0.12467 -0.00593 
-0.68196 -0.01147 -0.13020 -0.00677 

4,0 -0.58474 -0.48564 -0.11716 -0.02151 
-0.57947 -0.03099 -0.12717 -0.01487 

5.0 -0.52749 -0.48025 -0.10891 -0.03264 
-0.50568 -0.06952 -0.12462 -0.02828 

6.0 -0.49220 -0.48287 -0.10094 -0.04386 
-0.44518 -0.12015 -0.12010 -0.04424 

7,0 -0.47047 -0.46333 -0.09272 -0.04393 
-0.39668 -0.16891 -0.11532 -0.05915 

8,0 -0.45706 -0.45163 -0.08488 -0.04516 
-0.36362 -0.20418 -0.11144 -0.07035 

1 0 . 0  -0.44199 -0.43719 -0.07034 -0.04631 
-0.32668 -0.24583 -0.10678 -0.08487 

HF 
ODC 

3 Theoret. chim. Acta (Berl.)'Vol. 25 
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Table 8. Eigenvalues of 1170 state of H 2 

R ~g ~u ~u ~g 

1.5 -1 .13635 -0 .49951 -0 .09414 -0 .05539 
- 1.13629 -0 .00025 -0 .00018 -0 .05555 

1.8 -1 .04359 -0 .52773 -0 .09376 -0 .05544 
-1 .04344 -0.00041 -0 .00028 -0 .05569 

2.0 -0 .99060  -0 .54276  -0 .09332 -0 .05542 
-0 .99034  -0 .00059 -0 .00039 -0 .05575 

2.2 -0 .94358 -0 .55509 -0 .09270  -0.05541 
-0 .94315 -0 .00086  -0 .00053 -0 .05584 

3.0 -0 .79876 -0 .58012 -0 .08994  -0.05541 
-0 .79615 -0 .00384  -0.00181 -0 .05663 

4.0 -0 .59110 -0 .49236 -0 .10624  -0 .02197 
-0 .38974 -0 .25473 -0 .09090  -0 .05927 

5.0 -0 .52912 -0 .46234 -0 .09248 -0 .02147 
-0 .25565 -0 .35225 -0 .11903 -0 .06763 

6.0 -0 .49956 -0 .45476 -0 .08538 -0 .03004 
-0 .22853 -0 .36530  -0 .11989 -0 .07187 

7.0 -0 .45856 -0 .44506 -0 .07729 -0 .02483 
-0 .22768 -0 .36112 -0.11911 -0 .07776 

8.0 -0 .43739 -0 .43710  -0 .06940  -0.02441 
-0 .23749 -0 .35042 -0 .11738 -0 .08408 

10.0 -0 .41827 -0 .42537 -0 .05428 -0 .02605 
-0 .26029 -0 .32995 -0 .11452 -0 .09476 

H F  

O D C  

Table 9. Eigenvalues of 3119 state of H 2 

R ~g flu ~u ~g 

1.5 -1 .13606 -0 .50099 -0 .09579 -0 .05567 
-1 .13601 -0 .00025 -0 .00018 -0 .05585 

1.8 -1 .04301 -0 .52924  -0 .09534 -0.05581 
-1 .04289 -0 .00040  -0 .00027 -0 .05608 

2.0 -0 .98993 -0 .54397 -0 .09495 -0 .05586 
-0 .98972 -0 .00055 -0 .00036 -0.05621 

2.2 -0 .94258 -0 .55624  -0 .09425 -0 .05596 
-0 .94225 -0 .00077 -0 .00047 -0 .05640 

3.0 -0 .79718 -0 .58079 -0 .09138 -0.05651 
-0 .79535 -0 .00299 -0 .00142 -0.05761 

4.0 -0 .65900 -0 .55180  -0 .10159 -0 .05649 
-0 .62118 -0 .04814  -0 .01577 -0 .06183 

5.0 -0 .53888 -0.48251 -0 .10747 -0 .03852 
-0 .23116 -0 .35058 -0 .10614  -0 .05219 

6.0 -0 .50540 -0 .47139 -0 .09947 -0 .04469 
-0 .20069 -0 .36807 -0 .11008 -0 .05680 

7.0 -0 .47303 -0 .46149 -0 .09184 -0 .04463 
-0 .20288 -0 .36241 -0 .10997 -0 .06357 

8.0 -0 .45573 -0 .45341 -0 .08415 -0 .04558 
-0 .21739 -0 .34857 -0 .10832  -0 .07125 

I0.0 -0 .43786 -0 .44148 -0 .06981 -0 .04606 
-0.24691 -0 .32383 -0 .10555 -0 .08417 

HF  
O D C  
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configuration ~uv and increase for the configuration ~nv' in absolute value, so 
that ag approaches a u and re, approaches rc 0. The asymptotic limits should be 
-0 .25  for a and -0.06125 for re. Again we observe that the eigenvalues for all 
four states are close together when all are calculated with 1/7, exponents. 

Tables 10-13 contain the eigenvectors. For  all four states we observe little 
change in the coefficients of configuration ~HF when going from the HF level 
to the ODC level. The changes increase with increasing configuration interaction. 
They are relatively larger for the less important AO's 2s, 2po- and 3drc than for 
the dominant ls and 2p~. The HF'  MO's show decreasing change for the ls and 
2p with increasing interaction, i.e. they are more stabilized by configuration 
interaction. There is, at all distances an important change in the coefficients of 
2s, 2pa and 3d~ AO's of this configuration ~nv,- For large distances the coefficients 
of ls and 2p~ should approach 1/]/2, whereas the other coefficients should vanish. 
At 10 Bohr this trend becomes apparent. At small distances the most remarkable 
fact is the great difference in the coefficients of the a MO's for 1/70 and 3/70 states 
which has no counterpart in the energy. It could very well be that the way in which 
the ls, 2s, 2pa exponents for 1.5 Bohr were obtained had an influence on the 
coefficients. One might conclude that the dependence of the linear coefficients 
on the exponents is expressed in such a way that the coefficients can take care 
of a redistribution of the charge so that there is almost no energy change when 
going from 1H o to 3//o. We also emphasize that we did not reoptimize after 
obtaining the first optimized set of exponents. The discrepancy between 1170 
and 3/7g coefficients at 1.5 Bohr disappears when results of the//g states are based 
on the 1H, state exponents. 

5. Conclusion 

The purpose of the present paper was a characterization of the features of 
the four lowest- lying/ /s ta tes  of the hydrogen molecule. We employed a double- 
configuration wavefunction and three levels of approximation, namely HF, CI 
and ODC for energies and one-electron properties. We compared these properties 
for two sets of exponents: one set based on optimization of the 1/7 u state and 
taken also for all the other states and the other set based on optimization of all 
four states separately. 

We found that the potential curves Eci and EoD c are characterized properly 
with maxima and minima on the CI and ODC level, and also the HF level is 
represented properly by the Ear and EnF, curves. The emphasis on the accuracy 
of the HF level is decreased when the accuracy of the ODC level is increased. 
This can be seen from a comparison of the results for the 317, and II o states with 
1H, exponents and optimal exponents. The location of the maxima and minima 
of the potential curves is also dependent on the exponents. We find minima for 
H,, and/-/g states properly at R = 1.95 and R = 2.00 with the optimal exponents. 
The maxima for 1H, at R = 7.8 Bohr, for 1/19 at R = 3.8 Bohr and 3//0 at R = 4.2 Bohr 
are less secured. They probably depend on the choice of the basis set. 

An analysis of the one-electron properties shows uniformity for the four 
states when calculated with the same set of exponents, whereas significant differ- 

3* 
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40 K. Jug, P. G. Lykos, and A. D. McLean: Lowest Excited H States of H2. I 

ences be tween the s tates  begin  to show when their  p roper t i e s  are  ca lcu la ted  for 
each with  its own op t ima l  exponents .  

There  are  p r o b l e m s  with  exponen t  op t im iz a t i on  which are  difficult to resolve, 
in par t icu la r ,  the  dependence  of  the  exponents  on each o ther  and  the dependence  
of  the l inear  coefficients on the exponents .  We  find exponen t  op t imiza t i on  necessary 
when the M O ' s  a re  much  more  diffuse or  con t r ac t ed  than  ei ther  l imit  for large 
or  small  in te rnuc lea r  d is tances  so tha t  a p red ic t ion  for in te rmedia te  d is tances  
is no t  possible.  This  happens  to be the case for the 170 states a t  the energy min imum.  
F r o m  our  resul ts  we conc lude  tha t  it wou ld  be best  to op t imize  the exponents  
of  the d o m i n a n t  orbi ta ls ,  here l s  and  2p~z, and  a d d  a larger  n u m b e r  of  fur ther  
funct ions  which are  no t  op t imized  but  which a l low us by  l inear  coefficient op t imi -  
za t ion  to descr ibe  the features of po ten t i a l  curves proper ly .  
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